Scientific/Technical/Functional Skills:

Responsibilities will include, but are not limited to, the following:

- In close collaboration with project teams, develop and apply a wide variety of design and computational methods to improve potency, selectivity, protein degradation profiles and ADME properties while minimizing toxicological risk and pro-actively influence decision making on project teams.
- Significantly enhance understanding of SAR and contribute to team strategy by assimilating and interpreting data using structural modeling, AI/ML, statistical and data-mining/data-visualization technologies.
- Develop and apply new approaches for designing bioactive-relevant features using multi parameter optimization methods.
- Pro-actively provide scholarship in early target space vis-à-vis competitive information, literature/patent reviews and mining, chemical matter feasibility assessment, target feasibility/modality assessment, druggability/binding site characterizations, as appropriate.
- Maintain and develop working knowledge of contemporary computational chemistry methods and their application to discovery projects.

Scientific/Technical/Functional Skills:

- Demonstrated skills in the application of computer-assisted drug design using standard modeling and computational software packages
- Demonstrated ability to independently analyze literature and project data, formulate creative design hypotheses, data analysis and design novel agents in the context of project need.
- Demonstrated ability to serve as a lead computational chemist on multiple discovery projects and be accountable for delivery of project goals
- A working knowledge of medicinal chemistry and discovery
• Basic programming experience in at least one scripting language (e.g., Perl, Python) or programming language (Java, C, C++)
• Excellent communication and organizational skills and ability to work within a multidisciplinary team across geographic areas to advance discovery projects are required
• Personal attributes of integrity, creativity, problem solving, and strong work ethic

Basic Qualifications:
Bachelor’s degree with 5+ years of Academic or Industry experience
or
Master’s Degree with 3+ years of Academic or Industry experience
or
PhD and no years of experience

Preferred Qualifications:
• A completed Ph.D. in computational chemistry or a related field with strong application background as demonstrated by contributions to leading journals
• Demonstrated expertise in a subset of computational methods: docking methods, molecular dynamics simulations, homology modeling approaches, free energy simulations, AI/machine learning techniques, statistical methods, large-scale data visualization/analysis and multiple parameter optimization methods and a familiarity with the rest.
• Demonstrated experience in applying computational methods to diverse biological targets such as different protein families, DNA, RNA using different modalities such as traditional modulators, allosteric modulators, covalent agents, chimeric protein degraders, molecular glues, antibodies, antibody-drug conjugates is preferred.